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Fig. 1. Our novel grammar language Recomp facilitates many modeling scenarios that are difficult or infeasible in current systems. (a) We provide an integrated

solution to recombine subdivided shapes, effectively circumventing numerous multi-shape coordination challenges (red circles). (b) A novel recomposition

procedure allows for cohesive local shape modifications, significantly raising the geometric expressiveness. (c) Completed with a powerful tagging system to

annotate geometry components, Recomp allows to transport contextual information geometrically and to leverage general topological context like adjacency.

We present the novel grammar language Recomp for the procedural model-
ing of architecture. In grammar-based approaches, the procedural refinement
process is based on shape subdivisions. This process of decomposition results
in disconnected subparts, which not only restricts the geometric expressive-
ness but also limits the control over an appropriate shape granularity needed
to coordinate design decisions. Recomp overcomes these limitations by ex-
tending grammar languages with the recomposition ability. Fundamental is
the concept of rule inlining, allowing for the topological recomposition of
edited subparts by collapsing a shape subtree into one single shape on which
derivation can continue. This is completed with a versatile geometry tagging
system, allowing authors to compile and transport context information at
any level of detail and gain full control over the geometry independent of
the structure of the shape tree. Through various examples, we demonstrate
the power of Recomp in procedural layout and mass modeling, as well as its
capabilities in facilitating context-sensitive design.

CCS Concepts: • Applied computing→ Computer-aided design; • Com-
puting methodologies → Mesh geometry models.

Additional Key Words and Phrases: procedural modeling, grammar language

1 INTRODUCTION

Procedural modeling is an established method for 3D content cre-
ation in domains such as film, games, architecture, and urban plan-
ning. While some tools like Houdini or Blender provide generic
procedural functionality, other applications focus on specific do-
mains, for example SpeedTree (plants), Terragen (landscapes) or
CityEngine (buildings and cities).

In the domain of buildings, typically a grammar-based approach
is used to describe architecture. Such a description consists of a set

© 2024 Copyright held by the owner/author(s). This is the author’s version of the work.
It is posted here for your personal use. Not for redistribution. The definitive Version of
Record was published in Special Interest Group on Computer Graphics and Interactive
Techniques Conference Conference Papers ’24 (SIGGRAPH Conference Papers ’24), July
27-August 1, 2024, Denver, CO, USA, https://doi.org/10.1145/3641519.3657400.

of rules defining the hierarchical refinement process (derivation)
from a start shape (e.g., a coarse building shell extruded from its
footprint) to a detailed model. During the derivation, shapes are
iteratively replaced with refined shapes until the desired level of
detail is reached. This hierarchical process results in a shape tree
whose leaves define the result.

Grammar-based languages, such as CGA shape [Müller et al. 2006]
and CGA++ [Schwarz and Müller 2015], achieve stunning results
with visually complex details. However, many common modeling
scenarios pose challenges, while others remain infeasible due to the
following fundamental limitations:

L1. Whenever shapes are subdivided, the parts become indepen-
dent. Further refinements are then performed locally or require
advanced methods, such as events [Schwarz and Müller 2015],
for coordination across multiple shapes. Consequently, every
occurrence of having multiple shapes representing a whole
inherently complicates any subsequent derivation (Fig. 1a).

L2. Shapes cannot be locally modified without breaking the geomet-
ric cohesion. For instance, generating slanted surfaces (Fig. 1b)
through local transformations is impossible because the modi-
fied parts become separate shapes.

L3. Geometric topological context normally cannot be leveraged
(e.g., adjacency in the footprint; Fig. 1c), resulting in the loss of
spatial relations (e.g., which facades face the courtyard) when
the parts are separately derived. Conversely, because context
is stored on the shape level, merging shapes also has limited
applications, as information about individual parts will be lost.

In this paper we introduce recompose grammars that address and
overcome these limitations of the hierarchical derivation process.
Centered around two complementary key features — the ability to
structurally recombine parts of the model and to annotate geometry
with tags — we present the following new contributions:
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• Inlined derivation: Using a new keyword, the derivation of rules
and subdivisions can be inlined to collapse the resulting shape
subtree back into a single shape on which derivation can continue.
The concept is also used to enable Boolean 3D operations.

• Topological geometry recomposition: To consolidate the discon-
nected geometries of the leaf shapes back into one, we track ge-
ometry edits throughout the inlined derivation and specify a pro-
cedure that restores connectivity and resolves competing edits.

• Geometry tagging: We introduce geometry component tags and
detail the setup of tagged geometry and tag propagation on geom-
etry creation. Powerful selection is enabled through hierarchical
grouping, wildcards, and adjacency. Additionally, we enhance
shape operations to automatically add semantic tags.

The new functionality integrates seamlessly with established shape
grammar concepts, offering a simple yet general solution to core
limitations without increasing language complexity. Specifically,
our approach does not require explicit control over the derivation
order. Rules, which hierarchically evolve parts of the model, can
be inlined, allowing to return to a unified model at any stage. This
provides the flexibility to combine hierarchical and sequential deriva-
tion at any level of detail, while avoiding multi-shape coordination
challenges (addressing L1.). Our recomposition procedure not only
ensures structurally sound geometry in the recomposed shapes,
but also enables cohesive local shape modifications, including edits
on individual edge and vertex components (L2.). Recomposition
also offers a means to apply tags to specific parts of a shape. Tags
facilitate organizing the geometry of shapes and leveraging topolog-
ical relations between components, enabling effective subsequent
refinement independent of the geometric complexity (L3.).
We implemented the recomposition functionality (Sec. 3) and

geometry tagging (Sec. 4) in our novel grammar language Recomp.
In various examples we demonstrate the power of the new features,
as well as their efficiency in translating modeling objectives into
code (Sec. 5). Notably, the new features enable:

• topologically reconnecting the independent parts of subdivided
shapes for general decompose-refine-recompose workflows,

• creating custom forms via local transformations and selective
merging of adjacent surfaces, including

• geometric subroutines operating on edge and vertex components,
• organizing components for selection of complex subsets, and
• processing and transporting geometric context using tags.

2 RELATED WORK

Procedural architecture was pioneered by shape grammars [Stiny
1980; Stiny and Gips 1971], which consist of rules that geometrically
match and replace one (sub)shape with another. Set grammars [Stiny
1982] simplify matching by treating shapes as symbols instead of
geometric bodies, which led to split grammars [Wonka et al. 2003]
for modeling building facades. From this foundation, CGA shape
[Müller et al. 2006] emerged as a language for symbolic shape gram-
mars for the procedural modeling of buildings. Recomp evolves this
approach.
Control over the derivation order is another aspect and gener-

ally required to coordinate multiple shapes. Approaches include
CGA shape’s rule priorities, evaluation phases [Steinberger et al.

2014], and construction stages [Schwarz and Wonka 2014]. Full con-
trol over the derivation order is achieved by CGA++ [Schwarz and
Müller 2015], providing a generic solution to multi-shape coordina-
tion and high expressiveness, but at the cost of increased language
complexity. Our approach instead addresses the root problem that
leads to many coordination challenges later on.

Other approaches pursue a sequential derivation process, inwhich
the set of existing shapes is always known, thus naturally operating
in a global context (overcoming L1.). Approaches include Krecklau
and Kobbelt [2011] for interconnected structures, component based
modeling [Leblanc et al. 2011], and replacing symbol matching with
selection expressions [Jiang et al. 2020]. Similar are group grammars
[Carra et al. 2019; Santoni and Pellacini 2016] offering grouping
operators based on shape tags. With Recomp, we combine the hier-
archical derivation process with advantages of sequential derivation,
and generalize geometry component selection.
Notable tangential works that expand CGA shape include: in-

teractive visual editing [Lipp et al. 2008], local editing [Lipp et al.
2019], more classes of shapes [Krecklau et al. 2010], generalized
polyhedron scopes [Thaller et al. 2013], shape layers [Jesus et al.
2016] and spherical coordinate systems [Edelsbrunner et al. 2017].

Geometry tagging is used in interactive applications [Michel and
Boubekeur 2021; Nazzaro et al. 2021] and tools such as Maya.
Alternative approaches include generative modeling languages

[Havemann 2005], volumetric grammars [Willis et al. 2021], and
graph grammars [Merrell 2023].

We extend CGA shape’s most recent dialect [Esri 2023a,b]. CGA
operates on shapes, which are identified by a symbol and have a
scope, geometry within the scope, and attributes. The scope repre-
sents the shape’s oriented bounding box. Geometry is represented
by a polygon mesh alongside material information. Rules take the
form 𝛼-->𝛽 , where 𝛼 is a symbol denoting the rule’s name and 𝛽

comprises the rule’s body, containing a sequence of actions (oper-
ations and symbols) that output refined shapes. When a shape’s
symbol matches a rule’s left-hand side 𝛼 , it is replaced by the rule’s
right-hand side 𝛽 . Operations modify or subdivide the shape, while
a symbol creates a copy of the shape in its current state and assigns
it this symbol. If no matching rule is found, the shape becomes
a leaf shape, and the union of all leaf shapes comprises the final
model. This iterative process of substituting shapes until only leaf
shapes remain is called derivation. The derivation defines a shape
tree, where each shape occurring during the process is a node in
this tree.

Two types of operations exist in CGA: shape modifying and subdi-
vision. Shape modifying operations include translating, rotating and
resizing the shape’s scope, extruding polygons, constructing roofs,
or replacing the geometry with an asset. These operations have an
immediate effect on the current shape, i.e., its output is input to
the following action in the rule’s body. Subdivision operations, on
the other hand, offer different ways of splitting the shape, resulting
in one or more parts for which new actions are specified. Notably
are the comp operation, which decomposes the geometry into its
components such as faces, and the split operation, which subdi-
vides the shape along one axis of the scope. Unlike shape modifying
operations, subdivision operations create new shapes as successors
and have no effect on the current shape.
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Fig. 2. Example of a grammar showcasing inlining (top). The derivation of

the comp operation generates the inlined shape subtree (red) whose leaves

define the model (a). The tree is then iteratively collapsed bottom-up (b)

and (c), resulting in a single shape with recomposed geometry on which the

derivation can continue.

3 INLINING RULES AND SHAPE SUBDIVISIONS

Themain step in overcoming the limitations outlined in the Introduc-
tion is the ability to inline the derivation of symbols and subdivision
operations occurring in a rule’s body (Fig. 2). A symbol creates a
copy of the current shape and invokes the matching rule in a new
derivation branch that defines a shape subtree. When inlined, this
subtree is derived immediately and then collapsed, merging its leaf
shapes to replace the current shape (Sec. 3.1). In the case of subdivi-
sions, the current shape is split into parts, generating multiple new
shapes that are independently refined. Inlining then topologically
reconnects the edited geometries of the resulting shapes accord-
ing to our novel recomposition procedure (Sec. 3.2). This enables
decompose-refine-recompose workflows that maintain the geomet-
ric cohesion, unlocking the potential for a vastly expanded range of
geometrical forms that can be expressed using the available set of
operations.
The derivation of a symbol or subdivision operation is inlined

by prefixing it with the new inline keyword. Importantly, the re-
sulting shape subtree is identical to the subtree generated if it was
not inlined, keeping the derivation process consistent. To preserve
information on how the geometries of the different leaf shapes relate
to each other, we introduce geometry trackers. Whenever a subdi-
vision operation occurs during the derivation of an inlined shape
tree, such a tracker is initialized for all resulting shapes. During
the derivation of a shape with a tracker attached, all changes to its
topology relevant for recombining are stored. Finally, the recom-
posed shape replaces the current one, and the collapsed subtree
is removed. Hence, an inlined rule or subdivision operation acts
like a regular shape modifying operation and has no effect on the
structure of the shape tree.

3.1 Collapsing the Shape Subtree

The collapse of an inlined subtree is an iterative bottom-up process.
In each iteration, leaf shapes are registered with their parent. When
all children of a shape 𝑃 are registered, they are combined into a
single shape, replacing 𝑃 . This process continues until only the root
is left. An illustration is given in Fig. 3, generated with the following
grammar:

Start --> inline split(x) { '0.5: Left | '0.5: Right }
Left --> split(z) { '1/3: G | '1/3: s('0.6,'1.5,'1) Y | '1/3: G }
Right --> split(z) { ~1: NIL | '0.5: split(y) { '0.5: R |

'0.5: NIL } | ~1: NIL }

Process. In case 𝑃 only has one child, 𝑃 is simply replaced by that
child including its geometry tracker (highlighted in blue in Fig. 3).
In case there are multiple children and 𝑃 is a subdivision node

(highlighted in orange in Fig. 3), each child has a geometry tracker
that maps the child’s geometry to a distinct part of 𝑃 ’s geometry. Our
recomposition procedure “stitches” these geometries back together.
The result becomes the new geometry of 𝑃 and 𝑃 ’s tracker is updated
accordingly. Note that if a child’s geometry has been replaced using
the insert operation, it will not be reconnected.

If 𝑃 is not a subdivision node, each child maps to the same parent
geometry and we do not recompose. The geometries are simply
appended to replace the geometry of 𝑃 , and 𝑃 ’s geometry tracker is
cleared, thus it will not be reconnected with other subparts later on.

Further strategies. To accommodate scenarios in which the shapes
of the inlined subtree should bemerged using Boolean 3D operations
instead or not be recomposed at all, an additional parameter can be
specified: inline(union|append). In these cases, the leaf shapes
of the subtree are directly combined and no trackers are involved.

Shape attributes. In addition to the geometry and the scope, shapes
also store attribute values. Attributes are defined as part of the gram-
mar and can be read and set during derivation. We differentiate
between attribute values explicitly set for a shape (using the set
operation) and those inherited from the parent. If a specific attribute
value has been set only in one child, this value is transferred to the
parent 𝑃 ; otherwise, 𝑃 retains its current value for that attribute.

3.2 Recomposition Procedure

Given a number of locally edited subparts, the goal of the recompo-
sition procedure is to reestablish their connectivity. The crux of the
procedure lies in consolidating subdivisions of shared components,
relying solely on tracked information relative to the root topology.

Vertices. The first step of the recomposition procedure is to merge
vertices that map to the same original vertex. This mapping is main-
tained in the geometry tracker. The new position is determined by
a simple strategy: each vertex contributes a displacement vector,
the sum of which is added to the original vertex position. Formally:
𝑣 ′
𝑖
= 𝑣𝑖 +

∑
𝑣∈V𝑖

(𝑣 −𝑣𝑖 ), where V𝑖 is the set of vertices corresponding
to the original vertex 𝑣𝑖 and that are merged at 𝑣 ′

𝑖
. It is worth em-

phasizing that the simplicity of this “sum of displacements” strategy
is essential for ensuring predictable outcomes, making the recompo-
sition procedure a reliable tool for expressing modeling operations.
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Fig. 3. Example of collapsing a shape subtree. Starting with a cube (a), each shape appearing during the derivation is a node in the shape subtree whose leaves

define the derived model (b). From these leaf shapes, the subtree is traversed upwards, replacing predecessors (blue nodes) and recomposing at subdivisions

(orange nodes), until only the root remains (c). Fig. 5 illustrates the recomposition at the shared face highlighted in purple (*).

Edges. The second step of the procedure is to reconnect the parts
at initially shared edges, which is illustrated in Fig. 4. To accomplish
this, edge splits are tracked during the derivation of the parts. Let
𝑒 = (𝑣𝑎, 𝑣𝑏 ) be a shared edge split by the vertex 𝑣 into 𝑒1 = (𝑣𝑎, 𝑣)
and 𝑒2 = (𝑣, 𝑣𝑏 ), with 𝑡 as the interpolation value, such that 𝑣 =

(1 − 𝑡) · 𝑣𝑎 + 𝑡 · 𝑣𝑏 . The pair (𝑣, 𝑡) is associated with 𝑒 and stored in
the geometry tracker. To track further splits, 𝑒1 and 𝑒2 are added
to the tracker as well. The edge recomposition method proceeds as
follows: For each tracked edge, gather its splits stored in all trackers.
Next, sort them based on the interpolation values, forming a chain
of new edges. Finally, replace each occurrence of the edge with this
chain. Note that the recomposition of edges is purely index-based
and does not require the evaluation of any geometric attributes.

Faces. When splitting a volume, new faces are generated at the
intersection plane, with each face being shared by two parts. The
goal of the last step in the procedure is to reconnect the parts at
these shared faces. Fig. 5 demonstrates the process for the shared
face highlighted in purple on Fig. 3. Analogous to the approach with
edges, shared face splits are tracked during the derivation. A face
split is defined by an ordered list of vertex indices, representing
the split segments with the first and last vertex lying on the face’s
boundary. We store interpolation data for each vertex inserted dur-
ing the split. This involves triangulating the face to get barycentric
coordinates for each newly introduced vertex. When recomposing,
this enables us to treat all involved vertices as interpolations of the
original vertices that define the shared faces, providing us with a
planar domain that facilitates the computation of the unified tessel-
lation. Essentially, the only geometric evaluation required during
recomposition is the intersection of the face split segments (Fig. 5b).

Fig. 4. Example of edge recomposition. The two faces in (a) are refined

in different derivation branches: New vertices are inserted by splitting the

shared edge (b). These vertices are then translated (c), leading to overlapping

geometry (d). The recomposition consolidates the splits (e) based on the

relative positions at the point of their insertion in (b).

Each newly formed intersection vertex generates three positions.
The first is computed in the planar domain, while the remaining
two are calculated on the actual segments. These latter two posi-
tions define displacements that, when added to the first position,
determine the final vertex location. Ultimately, duplicate faces are
removed to complete the process.

Geometry tracker. A geometry tracker maps the geometry 𝐺𝐶 =

(𝑉𝐶 , 𝐹𝐶 ) of a shape to the geometry 𝐺𝑃 = (𝑉𝑃 , 𝐹𝑃 ) of its subdi-
vision root and stores splits of shared components. Geometry is
represented as a polygon mesh, consisting of a list of vertices𝑉 and
polygons 𝐹 , defined by a list of vertex indices. The tracker maintains
its own list of vertices, 𝑉𝑇 , initialized with 𝑉𝐶 , as well as two index
maps: 𝑉𝐶

𝐼𝐶𝑇−−−→ 𝑉𝑇
𝐼𝑇𝑃−−−→ 𝑉𝑃 . Shared edges are stored as pairs of

vertex indices connected to a list of edge splits, each comprising a
vertex index and the interpolation value. Upon registering an edge
split, the resulting edges are added to the data structure as well.
Shared faces are stored analogously. Pivotal, all vertex indices point
to 𝑉𝑇 , allowing to preserve information about component splits
even if these components were removed in 𝐺𝐶 .

Select operation. When shapes are created from edge or vertex
components using comp(e|v), the higher-dimensional components
(faces) are not part of the resulting shape subtree and are therefore
lost when the operation is inlined. To enable actions on individual
edges or vertices while allowing for recomposition into the full ge-
ometry, we introduce the select operation. It mirrors the syntax of
comp, automatically collapses the resulting subtree, and includes an
additional recomposition step to reintroduce missing components.

Fig. 5. Example of face recomposition. The tracked face splits are planarized

onto the original face (a), highlighted in purple in Fig. 3. Then, they are

combined via intersection, resulting in a unified tessellation (b). Finally, the

faces are deplanarized, and duplicate faces are removed.
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Fig. 6. Example of tags and inlining used in conjunction to create a unified

F-building layout, constructing a joint roof covering the whole building, and

leveraging face adjacency to distinguish facades facing the courtyards.

3.3 Boolean 3D Operations

Rule inlining allows for using one other shape as operand, offering
an efficient solution for integrating multi-shape operations, like
Boolean 3D operations, into shape grammars. The current shape
serves as the first operand, while the inlined subtree represents
the second. Both are input to a Boolean operation, the result of
which replaces the current shape. In Recomp, the operations union,
subtract, and intersect are implemented as keywords (Fig. 8).

4 ANNOTATED GEOMETRY

In grammar-based procedural modeling, the derived model is orga-
nized in a shape tree, where each part is identified by the symbol
of the shape it is contained in. When shapes are merged, i.e., using
Boolean operations or through recomposition, the individual shape
symbols are lost. This necessitates means of identifying geometry
components to distinguish the different parts of the model and take
advantage of the connectivity restored between them. Tradition-
ally, the comp (component split) operation is used for this purpose,
taking a list of selector:actions pairs, each of which identifies a set
of components and specifies actions for their further refinement.
In CGA languages, the selector primarily relies on evaluating the
geometric properties of the respective component, such as its ori-
entation, to determine a match. This does not provide sufficient
control to meaningfully decompose more complex shapes.

We transcend this limitation with tags. Tags are string attributes
stored directly on mesh components, and every face, edge, and
vertex may have an arbitrary number of tags.

Applying tags. The new tag(name) operation assigns name as a
tag to the highest-dimensional components available, typically faces.
The select operation is key in enabling tags to be set on specific
components, crucially edges and vertices. It allows to specify the
desired components using a selector, apply tags in the actions se-
quence, and then return to the full geometry through recomposition.
An example using face and edge tags is demonstrated in Fig. 6.

Tags are hierarchically grouped using the name separator . (dot),
for instance "Fac.A". We refer to the dot-separated parts of a tag
as subtags. The deleteTags operation clears tags, while currently

Fig. 7. Example illustrating some tag-based selection options (left: tagged

shape; top right: face selection; bottom: edge/vertex selection).

applied tags are queried using the getTags and hasTags functions.
Each can be provided with a query to only consider specific tags.

Tag propagation. We enhanced all geometry-modifying opera-
tions to preserve tags on existing components and define rules for
their propagation to new geometry, ensuring contextual information
is carried through the modeling process. Operations like extrude,
offset, and all roof operations consistently propagate tags: new
faces inherit the source face’s tags, while new faces emanating from
an edge – such as the side faces in extrude or the border faces in
offset (Fig. 1c) – also inherit their source edges’ tags. The same
applies for edges emanating from a vertex. The cleanupGeometry
operation maintains tagged edges and edges shared by faces with
different tags, enabling the important functionality of selectively
merging adjacent surfaces (Fig. 6a). On geometry subdivision, split
faces and edges retain their tags, while new components at the
intersection plane have none.

Component selection. The new tagged(query) function offers tag-
based selection (Fig. 7) and can be used in all selector expressions.
The query may include the wildcards ? (question mark) to match
one subtag, and * (asterisk) to match one or more. Due to the name
grouping, a tag query like "Fac" also matches tags with additional
subtags like "Fac.A". By default, tags stored on a component can
also be used to select its sub-components (i.e., to get the edges of a
tagged face). To select components based on tags of sub-components
or adjacent components, an additional argument is used.

Automatic semantic tagging. We further enhance established shape
operations to automatically apply predefined tags that identify se-
mantically different components of the output geometry (Fig. 8).
These auto-tags persist only until the next call of their respective
operation, at which point they are replaced with new ones.

Fig. 8. Example of auto-tags applied by the extrude and Boolean 3D

(subtract) operations while deriving the building mass. It uses these auto-

tags to generate different facades and roofs.
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5 RESULTS AND DISCUSSION

Transcending the limitations of the strict hierarchical derivation
process, Recomp enables novel procedural modeling applications
and increases the inherent geometric expressiveness (Fig. 9) and
context-sensitivity (Fig. 10) of grammar-based approaches. Code
snippets for all examples are provided in the supplemental materials.

5.1 Geometric expressiveness

Shape recomposition allows the model to be iteratively evolved at
any level of detail and enables new geometric forms. While our
method (Sec. 3.2) handles general recomposition cases, modeling
objectives are typically expressed through a series of simple and
intuitive steps. This is illustrated by the four examples in Fig 9.

Twisted building (Fig. 9 a-d). This example demonstrates the cre-
ation of a custom building mass through recomposition. The ex-
truded footprint is first split into sections (a), and each section’s top
face is rotated and scaled to produce a twist-and-taper effect (b).
Inlining the split operation then recomposes these sections into a
single connected mass (c), automatically removing inner faces du-
plicated by the top and bottom of adjacent sections. The auto-tags,
initially applied by the splitAndSetbackPerimeter operation to
create insets, are propagated throughout this process (green and
yellow), providing context for further refinement (d). The grammar:

Lot --> splitAndSetbackPerimeter('Offset)
{ '0.5: { Length: Depth: NIL | ~1: 0: NIL } }*
{ remainder: Footprint }

Footprint -->
extrude(Height)
inline split(y) { '1/ Vertical_Res: YStep(split.index) }*
comp(f) { tagged (" setback.back")= GreenFacade

| tagged (" setback.side")= ConcreteFacade
| all= Mass }

YStep(ind) --> select(f) { top: YStepPlate(ind+1) }
YStepPlate(ind) with (

a := (ind -1) / (Vertical_Res -1)
f := (1-a) + a*Taper_Factor

) --> r(0, 0, ind*Twist_Angle/Vertical_Res) s('f, 'f, 0) center(xy)

Mass --> split(y) { ~Floor_Height: Floor | Slab_Height: Slab }*

One World Trade Center (Fig. 9 e-h). The modeling steps required
to transform the extruded mass (e) into an antiprism are possible,
and directly translate into code, with inlining: We select the top face,
tag its vertices, rotate the scope, and subdivide it with two splits (f).
Then, we select the tagged vertices andmove them down (g), shaping
the antiprism that is further refined into the iconic landmark (h):

Tower -->
extrude(Height)
select(f) { top: SplitFace }
select(v) { tagged (" Corner "): translate(world , 0, -Height , 0) }
cleanupGeometry(vertices) // merges collapsed edges
MakeDetails

SplitFace with ( w := sqrt(scope.sx*scope.sx/2) ) -->
select(v) { all: tag(" Corner ") }
rotateScope (0, 0, 45)
inline split(x) { ~1: X. | w: X. | ~1: X. }
inline split(y) { ~1: X. | w: X. | ~1: X. }

Warped window facade (Fig. 9 i-m). This example illustrates a
custom facade layout. The surface is initially split into independent
wall and tagged window tiles (i). The window geometry is then

Fig. 9. Layout and mass modeling examples with pursued modeling strate-

gies and final results. (b) and (j) show the model before recomposition.

locally deformed by selecting edges and resizing them (j). Inlining
the facade rule applies these edits to the entire geometry (k) and
also enables subsequent geometry cleanup to merge the individual
wall pieces back into a single surface with window holes (l). Further
refinements can then again operate on the whole facade, such as
generating the wooden slats that span across the entire surface (m).

Procedural arches (Fig. 9 n-q). Recomp enables rules to function
as subroutines for typical geometric procedures. In this example, a
rule is designed to process a single edge. The edge is split and the
new vertices moved into a circle using trigonometric calculations.
Using select, this rule is applied to the middle edge in (n), creating
the layout (o) for a Roman arch (p). The rule is simply applied twice
to create the recursive pattern on a multifoil arch (q).

5.2 Context-sensitivity

The topological connectivity restored by our recomposition proce-
dure, together with tags, provide direct access to contextual infor-
mation required to drive design decisions. We illustrate this with
the construction of a parameterized low-poly house in Fig. 10.

We start by unioning three tagged planes, representing the build-
ing base and extension, and a designated area for a tree (a). Then, we
extrude both building sections to the shared height, and further ex-
trude the higher section (if any), tagging each level accordingly. This
results in one connected model contained within a single shape (b),
where tags group the surfaces in two ways: once per layout section
and once per floor level. Our design aims to transform the lower
roof into a terrace if accessible from the upper level, or construct a
joint flat roof if both roofs are adjacent. Moreover, large windows
should face the tree area and the terrace. Using the applied tags,
as well as geometric and topological properties of the model, we
can reliably derive the required information (c). For instance, edges
connecting the lower roof and the upper level represent the terrace
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entrance and are tagged as such. Based on this tag, we can then
identify the large window and terrace surfaces to continue separate
derivation (d). Extract from the grammar:

Mass with (
h1 := min(Base_NFloors ,Extension_NFloors)*Floor_Height
h2 := abs(Base_NFloors -Extension_NFloors)*Floor_Height
highPart := case Base_NFloors > Extension_NFloors: "Bldg.Base"

case Base_NFLoors < Extension_NFloors: "Bldg.Ext"
else: "None"

) -->
select(f) { tagged ("Bldg")= extrude(h1) }
select(f) { top && tagged(highPart)= extrude(h2) tag("Lvl .2")

| tagged ("Bldg"): tag("Lvl .1") }

select(f) { top && tag("Lvl .1"): tag("Roof.Low")
| top && tag("Lvl .2"): tag("Roof.High") }

select(e) { tagged ("Roof.Low") && tagged ("Lvl .2"):
tag(" TerraceEntr ")

| tagged ("Roof") && tagged ("Bldg.Base")
&& tagged ("Bldg.Ext"): tag("Roof.FlatMarker ") }

DecomposeMass

DecomposeMass -->
comp(f) { side && tagged (" TreeArea", e)= LargeWindows

| side && tagged (" TerraceEntr", e)= LargeWindows
| side= Facades
| tagged ("Roof.Low") && tagged (" TerraceEntr", e)=

Terrace
| tagged ("Roof")= Roof
| tagged (" TreeArea "): Tree }

Terrace --> TerrFloor comp(e) { !tagged (" TerraceEntr ")= Railings }

Roof -->
case hasTags ("Roof.FlatMarker "):

deleteTags () cleanupGeometry(edges) FlatRoof
else: GableRoof

The preserved connectivity in the mass model not only facilitates
the overall design process, but also simplifies subsequent modeling
tasks. First, through geometry cleanup, adjacent surfaces aremerged,
enabling a split pattern across different building sections for the
large windows (e), and removing inner borders on the flat roof.
Second, the edge tags allow to avoid placing terrace railings that
obstruct facades (f). Third, by having all facade pieces together in
one shape, we can use functions to query the index of the largest
front-facing one to place a single door.Without recomposition, these
tasks are typical examples of coordination challenges, requiring
access to other shapes via synchronization of the derivation process.
The information lost through subdivision must then be inferred via
spatial queries, while relying on Boolean operations to geometrically
merge shapes, which are not guaranteed to restore the topology.

5.3 Comparison to Related Methods

Numerous prior works deal with grammar-based procedural mod-
eling. With Recomp, we are the first to present a comprehensive
solution to recombining parts of a hierarchically derived model.

CGA++ [Schwarz and Müller 2015] introduces events to synchro-
nize derivation and grants first-class citizenship to shapes and shape
trees. This provides great support to coordinate refinement decisions
across multiple shapes. However, CGA++ inherits the limitations of
hierarchical derivation and does not effectively address scenarios
where independent shapes ultimately attempt to form a whole. This
and many coordination tasks are subsumed by Recomp’s ability to
return to a unified and tagged model.

To organize and select shapes in a sequential derivation process,
Selex [Jiang et al. 2020] uses virtual grids and selection expressions,

Fig. 10. Low-poly building design, showing two variations. (a-c) Pursued

modeling strategy with colors visualizing tags. (d) Decomposed mass for

separate further refinement. (e,f) Modeling details. (bottom) Results.

while group grammars [Carra et al. 2019; Santoni and Pellacini 2016]
use shape tags and grouping operators. In contrast, Recomp allows
to sequentialize hierarchical derivation steps through recomposition
and uses tags to organize and select geometry inside a single shape.

Generalizations like more classes of shapes [Krecklau et al. 2010],
polyhedron scopes [Thaller et al. 2013], and spherical coordinate
systems [Edelsbrunner et al. 2017] allow rules to operate in extended
domains, which would integrate well with Recomp’s approach.

Geometry component tags exist in other tools (e.g., Maya) where
they can be interactively set in a GUI. With Recomp, we introduce
tags to procedural modeling and define the domain-specific func-
tionality. Related concepts are semantic tags [Schwarz and Wonka
2014], which resemble our auto-tags, and CityEngine’s limited edge
attributes [Esri 2023b] to bring in external context, such as street
adjacency of the initial shape. Our tags allow such information to
be processed and reliably propagated throughout the derivation.

Limitations. While Recomp allows shapes to be recombined at
their common root, it does not provide general access to other
shapes. Our procedure does not prevent invalid geometry (e.g.,
a user could move a vertex to create a self-intersecting surface).
Besides that, control over the recomposition process (i.e., vertex
merging) and evolving tags into key-value pairs would allow for
more functionality. This could be explored in future work.

6 CONCLUSION

We have presented Recomp, a novel grammar language for proce-
dural architecture that turns the strict decompose-refine workflow
of established languages into a flexible decompose-refine-recompose
workflow. The cornerstone is a novel topological recomposition pro-
cedure for cohesive shape recombination, complemented with ge-
ometry component tags for effective further refinement. As demon-
strated in various examples, the new features integrate seamlessly
with existing functionality, and overcome important limitations of
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the hierarchical derivation, enabling many new applications and
solutions to previously unattainable modeling tasks.
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Fig. 11. More variations of the examples.
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