
Recompose Grammars for Procedural Architecture
— Supplemental Material
NIKLAUS HOUSKA, Esri R&D Center Zurich, Switzerland
CHERYL LAU, Esri R&D Center Zurich, Switzerland
MATTHIAS SPECHT, Esri R&D Center Zurich, Switzerland

OVERVIEW
In this supplemental material, we give an overview of all new lan-

guage elements introduced by Recomp (Sec. 1) and provide addi-

tional code (Sec. 2) that was used to generate the examples presented

in the paper.

1 RECOMP REFERENCE
This section provides a list of all new keywords, operations, func-

tions and selectors added in respect to CGA shape’s most recent

version [Esri 2023].

1.1 Inlined Derivation and Boolean 3D Operations
Inlined derivation is specified with the new keyword:

inline symbol or subdivison operation
inline(union|append) symbol or subdivison operation

Triggers the immediate derivation of the following symbol

or subdivison operation. The resulting subtree is collapsed

using the given strategy (default is recomposition) into one

new shape that replaces the current.

Similarly, Boolean 3D operations can be used with separate key-

words:

intersect symbol or subdivison operation
subtract symbol or subdivison operation
union symbol or subdivison operation

Mirrors the functionality of inline, but instead of replacing

the current shape with the new one, both shapes are input to

the specified Boolean operation.

1.2 Geometry Component Tags
Tags are set and deleted with the following operations:

tag(name)
Adds name as a tag to all highest-dimensional components

available. Any valid string is supported as name, except re-
served wildcards characters (?, *), which are filtered out. The

. (dot) character is interpreted as name separator.

deleteTags()
deleteTags(query)

Deletes tags from all geometry components. The optional

query parameter can be used to only delete matching tags.

Tags are queried with the following functions:

getTags()

getTags(query)
Returns a list of all applied tags. The optional query parameter

can be used to only get matching tags.

hasTags(query)
Returns true if any geometry component has a tag matching

the query.

1.3 Component Selection
Tag-based selection is offered with the new selector functions:

tagged(query)
Returns true if the component has a tag matching the query.
Edge and vertex components inherit the tags of adjacent

higher-dimensional components for selection.

tagged(query, e|v)
Evaluates tagged(query) on the specified sub-components

instead, and returns true if any sub-component is selected.

predicate expressions
Static selectors (e.g., front) and functions can be logically

combined. General functions are evaluated within the geo-

metric context of the inspected component.

1.4 Shape subdivision
Operations can be locally applied and reintegrated with the rest

using the new select operation:

select(f|e|v|fe|fv) { selector operator actions | ... }
Mirrors the functionality of comp, but with always inlined

derivation. The subsequent recomposition procedure implicitely

adds non-selected and missing higher-dimensional compo-

nents to the result, recomposing them with the modified

components.

Default components are f (faces), e (edges), v (vertices). The

resulting scope of face components is always x-aligned to

the first edge and z-aligned to the face normal. However, the

direction of the x-axis of edge components depends on the un-

derlying indexing, while only the y-axis of vertex components

is generally predefined. For this reason, the fe (face edges)

and fv (face vertices) options exist, generating a separate

edge or vertex component per face with consistent scopes:

the x-axis follows the direction of the face’s boundary, while

the z-axis points outwards.
The operator allows the selected components to be treated

separately (:) or combined into a single shape (=).

1

HTTPS://ORCID.ORG/0009-0006-5388-901X

2 EXAMPLES
This section provides additional code for the examples in the paper.

The code snippets focus on selected modeling steps that use the

new features of Recomp. Attribute definitions and rules adding

geometric details are omitted for brevity.

2.1 Slanted Tower Mass and Mountain Facade
This example is shown in Fig. 1b in the paper. The construction of

the mass, which is similar to but slightly more complex than what

is shown in Fig. 2 in the paper, creates a mass with slanted towers,

raised bottom faces, and a subtracted box for a tree garden (Fig. 1a-c

here). The mountain facade pattern is also created procedurally

relying on recomposition (Fig. 1d-f here).

We apply the Mass rule to a rectangular building footprint. First,

context is setup by tagging the facades based on orientation, which

is needed for the mountain facade pattern later on. Then, the top

and bottom faces are split into sections (a) and locally transformed

using inlined derivation (b).

Mass -->
extrude(Base_Height + Building_Height)
inline SetupContext
select(f) { top: RoofPattern | bottom: BottomPattern }
subtract TreeBoxVolume
comp(f) { tagged (" Facade ")= MountainFacades

| tagged ("Roof")= ...
| tagged (" TreeBox ")= ... }

SetupContext -->
select(f) { front: tag(" Facade.Front")

| right: tag(" Facade.Right")
| back: tag(" Facade.Back")
| left: tag(" Facade.Left") }

RoofPattern -->
split(x) { ~Level_Width: Level(Switch)

| { ~0.5* Level_Width: tag("Roof.Slanted.A")
| ~Level_Width: Level(! Switch)
| ~0.5* Level_Width: tag("Roof.Slanted.B")
| ~Level_Width: Level(Switch) }* }

Level(switch) -->
case switch: LowLevel
else: HighLevel

LowLevel -->
t(0, 0, rint(rand (0,2))*Floor_Height)
tag("Roof.Level.Low")

HighLevel -->
t(0, 0, rand (4,8)*Floor_Height)
r(0, rand (-30,30), 0)
tag("Roof.Level.High")

BottomPattern --> ...

Next, a box is subtracted (c). Its position and size are parameter-

ized for manual control.

TreeBoxVolume -->
t(TB_tx , Base_Height+TB_ty , TB_tz)
s(TB_sx , TB_sy , TB_sz)
primitiveCube ()
tag(" TreeBox ")

The generation of the mountain pattern begins with splitting the

facades into upper and lower sections and recomposing. Then, the

shared edges between the upper and lower sections are recursively

split, and the new vertices are randomly moved vertically (d). Finally,

the vertices at the ends of adjacent facades are merged to create

a continuous pattern around the building (e). The whole step is

repeated for an additional level of detail (f).

Fig. 1. Slanted tower building. (a-c) Basic mass model construction steps.
(d-f) Modeling steps for the custom facade with a procedural mountain
pattern wrapping around the building. (g) Final result.

Mountain_Res = 10
Mountain_Move_Percent = 0.9

MountainFacades -->
select(f) { tagged (" Facade ")= SplitMountainFacade }
inline MakeMountains(Mountain_Res , Mountain_Move_Percent)
inline MakeMountains (0.25* Mountain_Res ,1- Mountain_Move_Percent)
comp(f) { tagged (" Facade.Lower"): FacadeLower

| tagged (" Facade.Upper"): FacadeUpper }

SplitMountainFacade with (
baseHeight := Base_Height + Mountain_Base_Height

) -->
inline split(y) { baseHeight: tag(" Facade.Lower")

| ~1: tag(" Facade.Upper") }
select(e) { tagged (" Facade.Lower") &&

tagged (" Facade.Upper"): tag(" MountainEdge ") }

MakeMountains(res , percent) -->
select(e) { tagged (" MountainEdge "): SplitRec(res , percent) }
inline MergeMountainVertices

SplitRec(res , percent)-->
case scope.sx < 1.5* res: MoveVertex(percent)
else: split(x) { rand (0.5*res , res): MoveVertex(percent)

| ~1: SplitRec(res , percent) }

MoveVertex(percent) -->
alignScopeToAxes(y)
select(v) { 0: t(0, rand(0, percent*Max_Mountain_Height), 0) }

MergeMountainVertices -->
inline MergeVertices ("Front","Right")
inline MergeVertices ("Right","Back")
inline MergeVertices ("Back","Left")
inline MergeVertices ("Left","Front")

MergeVertices(a, b) -->
select(v) { tagged (" Facade ."+a) && tagged (" Facade ."+b) &&

tagged (" Facade.Lower") && tagged (" Facade.Upper")=
s(0,0,0) }

2.2 Building with Front Porch
This example shown in Fig. 1c in the paper demonstrates how ad-

jacency information can be leveraged to build up context. More

detailed construction steps are illustrated in Fig. 2 here. We start

with the Lot rule on a square. The inlined Layout rule replaces it
with a pentagon as building footprint and unions it with a scaled

and translated copy representing the courtyard (a). Then we use tag

removal and geometry cleanup to assign the intersection between

both footprints to the courtyard, and tag the adjacency (b).

2

Fig. 2. Building with a front porch. (a-d) Visual guide for the construction
steps. (e) Final result.

Lot -->
inline Layout
select(e) { tagged ("bool.A") &&

tagged ("bool.B"): tag(" Entrance ") }
comp(f) { tagged ("bool.A"): House

| tagged ("bool.B"): Courtyard }

Layout -->
primitiveDisk (5) // inserts a pentagon
union CourtyardFootprint
select(f) { tagged ("bool.A") &&

tagged ("bool.B"): deleteTags ("bool.A") }
cleanupGeometry(edges)

CourtyardFootprint -->
s(5, 0, 5) center(x) t(4, 0, 9)

The edge tag (yellow) previously applied to the shared edge is

automatically propagated to the facade surfaces (c).

House -->
extrude (3.5)
split(y) { 0.8: Concrete | ~1: Floor }

Floor -->
comp(f) { tagged (" Entrance ")= GlassDoors

| side: Facade | top: Roof }

To model the courtyard area, we use the offset operation, which
propagates the edge tags to the new offset border faces. This allows

to determine the location of the stairs (purple) and railings (red) for

the elevated front porch (d).

Courtyard -->
select(e){ !tagged (" Entrance "): tag("Path") }
offset (-2)
select(f) { inside: tag(" TreeArea ") }
select(e) { tagged (" Entrance ") && tagged ("Path"): tag(" Stairs ")

| tagged (" Entrance ") &&
tagged (" TreeArea "): tag(" Railings ") }

comp(f) { tagged (" Entrance ")= Porch
| inside: TreeArea | all: Path }

Porch -->
extrude (0.8)
comp(f) { tagged (" Stairs "): Stairs }
comp(fe) { top && tagged (" Railings ")= Railings }
Concrete

2.3 Warped Windows Facade and Wooden Slats
This example is presented in Sec. 5.1 in the paper. Derivation begins

with the WarpedWindowFacade rule applied to a facade surface. We

start by splitting out rectangular windows, and then we warp them

by resizing selected window edges (using index-based selection).

Although the facade is split into multiple pieces, we are able to

recompose all the facade pieces into one shape in order to create a

continuous facade of wooden slats.

WarpedWindowFacade -->
inline FacadePattern
select(f) { tagged (" Window "): ResizeEdges }
cleanupGeometry(edges)
comp(f) { tagged (" Window "): ... | all: WoodenSlats }

Fig. 3. Wooden slats construction.

FacadePattern --> split(y) { Floor_Height: Row }*
Row --> split(x) { Tile_Width: Tile }*
Tile -->

split(x) { ~1: X.
| Window_Width: split(y) { ~1: X.

| Window_Height: tag(" Window ")
| ~1: X. }

| ~1: X. }

zeroOrTwo = 50%: 0 else: 2
ResizeEdges -->

comp(fe) { zeroOrTwo: s('rand (0.5, 0.8), 0, 0) center(x)
| zeroOrTwo +1: s('rand (0.5, 0.8), 0, 0) center(x) }

To generate wooden slats across the entire facade, we apply the

WoodenSlats rule to the facade face after window holes are re-

moved (Fig. 3 here). The procedural slats have small deformations,

giving each slat individual character. This is done by adding vertices,

randomly perturbing them, and recomposing:

Cut_Percent = 0.6
Slat_Spacing = 0.01
Slat_Deviation = 0.7

WoodenSlats -->
split(x) { ~Slat_Width: CutSlat }*

CutSlat -->
case p(Cut_Percent):

split(y) { 'rand (0.1 ,0.9): DeformSlat | ~1: DeformSlat }
else:

DeformSlat

DeformSlat with(a:= Slat_Deviation*Slat_Spacing) -->
offset(-Slat_Spacing , inside)
select(e) { all: split(x) { ~0.3: X. }* }
extrude(Slat_Depth)
select(fv) { tagged (" extrude.top"):

t(rand(-a,a),rand(-a,a),rand(-a,a)) }
color(Facade_Color)

2.4 Arch Subroutine
This example presented in Sec. 5.1 in the paper illustrates how

rules can act as geometric subroutines on individual edges. The

Fig. 4. Demonstration of the arch rule: (left) round arch, (right) multifoil
arch.

3

MakeArch rule expects a single edge as input and curves it, offering

two parameters: the number of vertices to insert and the angle span

of the curved section. The CurveSharedEdge rule is a wrapper for
MakeArch ensuring a correct scope for the local transformations. It

takes two face tags as input — bottom and top — and curves each

shared edge outwards from the bottom face.

CurveSharedEdge(bottom , top , n, angleSpan) -->
select(e) { tagged(top) && tagged(bottom): tag(" EdgeMarker ") }
select(f) { tagged(bottom):

select(fe) { tagged (" EdgeMarker "):
MakeArch(n+1, angleSpan) } }

deleteTags (" EdgeMarker ")

MakeArch(n, angleSpan) with (
w := scope.sx
r := w / 2

)-->
split(x) { { (w/n): MoveVertex(r, angleSpan) }*

| (w/n): X. }

MoveVertex(r, angleSpan) with (
frac := (split.index +1)/split.total - 0.5
angle := frac * angleSpan
delta := (180 - angleSpan) / 2
dx := 2*r*frac - r*sin(angle)/cos(delta)
dz := r*cos(angle) - r*sin(delta)

) -->
select(fv) { 1: t(dx, 0, dz) }

We use the CurveSharedEdge rule to make different arches (Fig. 4

here). The RoundArch and MultifoilArch rules are applied to a

face, which is first split into a basic tagged layout. The tags identify

the shared edge that should be curved.

RoundArch -->
inline BasicPattern (0.4)
inline CurveSharedEdge (" Bottom", "Top", 16, 180)
comp(f) { tagged (" Bottom "): NIL

| tagged ("Top"): ArchTop
| all: Pillar }

BasicPattern(side) -->
split(y) { ~1: split(x) { side: X.

| ~1: tag(" Bottom ")
| side: X. }

| scope.sx/2: tag("Top") }

To create the recursive pattern on a multifoil arch, we apply the

arch rule twice:

MultifoilArch -->
inline BasicPattern (0.18)
inline CurveSharedEdge (" Bottom", "Top", 4, 160)
inline CurveSharedEdge (" Bottom", "Top", 10, 140)
comp(f) { tagged (" Bottom "): Window

| all= OuterFrame }

2.5 Single Door
This modeling step (illustrated in Fig. 5 here) is part of the low-

poly house example presented in Sec. 5.2 in the paper. The single

door is achieved because all eligible facade surfaces (a) are within a

single shape. We use the comp function to get the width of all front-

facing facades on floor level (b) and the sortIndices function to

determine the index of the widest one (c), and place a door there (d).

Facades with (
widths := comp(f) { tagged ("Lvl .1") && front: scope.sx

| all: 0 }
doorFacadeIndex := sortIndices(widths)[0]

)-->
comp(f) { doorFacadeIndex: FacadeWithDoor }

| all = NormalFacades }

Fig. 5. Determining the single door facade.

REFERENCES
Esri. 2023. CGA shape grammar reference. https://doc.arcgis.com/en/cityengine/2023.

0/cga/cityengine-cga-introduction.htm

4

https://doc.arcgis.com/en/cityengine/2023.0/cga/cityengine-cga-introduction.htm
https://doc.arcgis.com/en/cityengine/2023.0/cga/cityengine-cga-introduction.htm

	1 Recomp reference
	1.1 Inlined Derivation and Boolean 3D Operations
	1.2 Geometry Component Tags
	1.3 Component Selection
	1.4 Shape subdivision

	2 Examples
	2.1 Slanted Tower Mass and Mountain Facade
	2.2 Building with Front Porch
	2.3 Warped Windows Facade and Wooden Slats
	2.4 Arch Subroutine
	2.5 Single Door

	References

